Telegram Group & Telegram Channel
قطار self-supervised به ایستگاه tabular data رسید!

قطعا در مدح self-supervied  learning زیاد شنیدید و در این پست (https://www.tg-me.com/kr/NLP stuff/com.nlp_stuff/298) هم روش‌هاش در NLP رو مرور کردیم. یکی از محدودیت‌های اصلی self-supervised learning اینه که خیلی وابسته به دامین و مودالیتیه. مثلا روش‌های حوزه تصویر به سختی برای حوزه متن قابل انجامه. حالا مردانی مرد از google research به پا خاسته‌اند و سعی کردند روشی عمومی برای self supervised learning ارایه کنند که حتی بر روی tabular data هم بتونه جواب بده. معماری کلی این روش رو در تصویر زیر می‌تونید ببینید. مانند همه روش‌های SSL که در NLP بررسی کردیم، طبیعتا اینجا هم فاز pre-training و fine-tuning داریم که اساسا وجود همین پارادایم هم باعث میشه در محیط‌هایی که داده لیبل‌دار کمتری وجود داره بهتر عمل بکنه. ایده اصلی در فاز pre-training هست که از denoising auto encoderها الهام گرفته شده. در این روش به ازای یه batch از داده ترین به صورت رندم یک زیرمجموعه‌ای از فیچرها انتخاب میشه و این فیچرها رو corrupt می‌کنند. روش corruption هم به این صورته که به صورت رندم با همون فیچرها از سمپل‌های دیگه جایگزین میشه. حالا همون‌طور که در قسمت بالای تصویر می‌بینید دیتای سالم و دیتای corruptشده به ‌طور همزمان (تعریف همزمان اینه که دو تا شبکه داریم که full parameter sharing انجام دادند) به یک شبکه انکودر f داده می‌شه که داده رو به فضای بزرگتری می‌برند و سپس به یک شبکه g داده می‌شه که داده رو به فضای کوچکی میبره و بعد با استفاده از InfoNCE که یه loss function مشهور در عرصه SSL هست تفاوت خروجی شبکه به ازای دیتای corruptشده و دیتای سالم به دست میاد و کار ترینینگ انجام میشه (InfoNCE عملا شبیه یه categorical cross entropy عمل می‌کنه که به ازای نمونه‌های شبیه به هم مقدار کمی خروجی می‌ده و به ازای نمونه‌های negative که دور از هم هستند هم مقدار زیادی رو خروجی میده).
در فاز fine tuning عملا شبکه g  کنار گذاشته میشه و یک classifier head بر روی شبکه f گذاشته میشه و کل شبکه fine tune میشه.
برای تست این روش هم از دیتاست OpenML-CC18 استفاده شده که ۷۲ تسک دسته‌بندی داره و چون این مساله برای tabular data بوده ۳ تا از دیتاست‌هاش رو (CIFAR , MNIST, Fashion MNIST) کنار گذاشتند و عملا بر روی ۶۹ دیتاست تست گرفتند که روی برخی حتی با داده کمتر، بهبود هم داشته. مقاله خیلی جمع و جور و به زبان ساده و با جزییات تکنیکال نوشته شده و توصیه می‌کنیم حتما بخونید.

لینک مقاله:
https://arxiv.org/abs/2106.15147

لینک گیت‌هاب:
https://github.com/clabrugere/pytorch-scarf

#read
#paper

@nlp_stuff



tg-me.com/nlp_stuff/312
Create:
Last Update:

قطار self-supervised به ایستگاه tabular data رسید!

قطعا در مدح self-supervied  learning زیاد شنیدید و در این پست (https://www.tg-me.com/kr/NLP stuff/com.nlp_stuff/298) هم روش‌هاش در NLP رو مرور کردیم. یکی از محدودیت‌های اصلی self-supervised learning اینه که خیلی وابسته به دامین و مودالیتیه. مثلا روش‌های حوزه تصویر به سختی برای حوزه متن قابل انجامه. حالا مردانی مرد از google research به پا خاسته‌اند و سعی کردند روشی عمومی برای self supervised learning ارایه کنند که حتی بر روی tabular data هم بتونه جواب بده. معماری کلی این روش رو در تصویر زیر می‌تونید ببینید. مانند همه روش‌های SSL که در NLP بررسی کردیم، طبیعتا اینجا هم فاز pre-training و fine-tuning داریم که اساسا وجود همین پارادایم هم باعث میشه در محیط‌هایی که داده لیبل‌دار کمتری وجود داره بهتر عمل بکنه. ایده اصلی در فاز pre-training هست که از denoising auto encoderها الهام گرفته شده. در این روش به ازای یه batch از داده ترین به صورت رندم یک زیرمجموعه‌ای از فیچرها انتخاب میشه و این فیچرها رو corrupt می‌کنند. روش corruption هم به این صورته که به صورت رندم با همون فیچرها از سمپل‌های دیگه جایگزین میشه. حالا همون‌طور که در قسمت بالای تصویر می‌بینید دیتای سالم و دیتای corruptشده به ‌طور همزمان (تعریف همزمان اینه که دو تا شبکه داریم که full parameter sharing انجام دادند) به یک شبکه انکودر f داده می‌شه که داده رو به فضای بزرگتری می‌برند و سپس به یک شبکه g داده می‌شه که داده رو به فضای کوچکی میبره و بعد با استفاده از InfoNCE که یه loss function مشهور در عرصه SSL هست تفاوت خروجی شبکه به ازای دیتای corruptشده و دیتای سالم به دست میاد و کار ترینینگ انجام میشه (InfoNCE عملا شبیه یه categorical cross entropy عمل می‌کنه که به ازای نمونه‌های شبیه به هم مقدار کمی خروجی می‌ده و به ازای نمونه‌های negative که دور از هم هستند هم مقدار زیادی رو خروجی میده).
در فاز fine tuning عملا شبکه g  کنار گذاشته میشه و یک classifier head بر روی شبکه f گذاشته میشه و کل شبکه fine tune میشه.
برای تست این روش هم از دیتاست OpenML-CC18 استفاده شده که ۷۲ تسک دسته‌بندی داره و چون این مساله برای tabular data بوده ۳ تا از دیتاست‌هاش رو (CIFAR , MNIST, Fashion MNIST) کنار گذاشتند و عملا بر روی ۶۹ دیتاست تست گرفتند که روی برخی حتی با داده کمتر، بهبود هم داشته. مقاله خیلی جمع و جور و به زبان ساده و با جزییات تکنیکال نوشته شده و توصیه می‌کنیم حتما بخونید.

لینک مقاله:
https://arxiv.org/abs/2106.15147

لینک گیت‌هاب:
https://github.com/clabrugere/pytorch-scarf

#read
#paper

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/312

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

NLP stuff from kr


Telegram NLP stuff
FROM USA